
Quasi-Atomistic Receptor Surface Models: A Bridge between 3-D
QSAR and Receptor Modeling
Angelo Vedani,* Max Dobler,† and Peter Zbinden‡

Contribution from the Biographics Laboratory 3R, Missionstrasse 60, 4055 Basel, Switzerland

ReceiVed NoVember 20, 1997. ReVised Manuscript ReceiVed February 19, 1998

Abstract: A “quasi-atomistic receptor model” refers to a three-dimensional receptor surface, populated with
atomistic properties (hydrogen bonds, salt bridges, hydrophobic particles, and solvent) mapped onto it. In
contrast to other 3D-QSAR approaches, an algorithm developed at our laboratory allows for the adaptation of
the receptor-surface defining envelope to the topology of the individual ligand molecules. In addition, it includes
H-bond flip-flop particleswhich can simultaneously act as H-bond donors and H-bond acceptors toward different
ligand molecules, binding to the surrogate within a pharmacophore hypothesis. Such particles mimic amino-
acid residues able to engage in differently directed H-bonds at the true biological receptor. Ligand-receptor
interaction energies are evaluated using a directional force field for hydrogen bonds and salt bridges. On the
basis of a series of ligand molecules with individually adapted receptor envelopes, the software Quasar allows
a family of receptor models to be generated using a genetic algorithm combined with cross-validation. Our
concept has been used to derive semiquantitative structure-activity relationships for theâ2-adrenergic, aryl
hydrocarbon, cannabinoid, neurokinin-1, and sweet-taste receptor as well as for the enzyme carbonic anhydrase.
The receptor surrogates for these systems are able to predict free energies of ligand binding for independent
sets of test ligand molecules within 0.4-0.8 kcal/mol (RMS) of the experimental value.

Introduction

Quantitative structure-activity relationship (QSAR) is an area
of computational research which builds mathematical or virtual
models to explain the biological activity for a series of
compounds using topological and physicochemical ligand data.
The idea behind QSAR is that molecular properties can be
correlated with biological activity. Of particular interest for
drug-design purposes are three-dimensional models, including
atomistic and surface constructs of the hypothetical binding site,
as they provide intuitive receptor surrogates.
In the absence of an experimental structure (X-ray or NMR)

of the macromolecular receptor, whole models derived from
the three-dimensional structure of a closely related homologue
provide a high level of surrogate realism (cf., for example, ref
1). Binding-site models such as peptidic pseudoreceptors can
approach the quality of homology models if carefully validated.
The philosophy underpinning the pseudoreceptor concept is to
engage the bound species in sufficient, specific noncovalent
binding so as to mimic the essential ligand-macromolecule
interactions at the true biological receptor (see, for example,
refs 2-6). Although, in general, the sequence and arrangement
of the building blocks of a pseudoreceptor (amino acid residues,
metal ions, solvent) and its natural counterpart bear only little

resemblance, the receptor and surrogate should accommodate
a series of ligands in a relatively similar binding sense.4,7

A receptor-surface model provides essential information about
the hypothetical receptor site by means of a three-dimensional
envelope populated with properties mapped onto its surface.
The shape of the surface represents information about the steric
nature of the receptor site; the associated properties represent
other information of interest, such as hydrophobicity, partial
charge, electrostatic potential, and hydrogen-bonding propen-
sity.8 Various algorithms to generate such three-dimensional
receptor surrogates have been described and validated.8-13 Of
these, the software GERM10 is probably closest in philosophy
to our approach; however, it calculates the ligand interactions
toward an averaged receptor model and by means of a
nondirectional force field. Moreover, it lacks H-bond flip-flop
particles and the possibility to simulate solvation effects.
Although the validity of both atomistic and surface models

has been demonstrated for a wealth of systems, two properties
of biological receptors have so far not been directly simulated
with such techniques:receptor adaptationandH-bond flip-
flop. As both approaches determine ligand-receptor interaction
energies toward an averaged receptor, subtle effects associated
with the adaptation of the receptor shape to the individual ligand
molecules able to bind to it remain unaddressed. At the true

† Laboratory for Organic Chemistry, ETH Zu¨rich, 8092 Zürich, Swit-
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biological receptor, amino-acid residues bearing a conforma-
tionally flexible H-bonding function (i.e., Ser, Thr, Tyr, Cys,
His, Asn, and Gln) can engage in differently directed H-bonds
with different ligand moleculessan effect that can also not be
simulated with an averaged receptor, simultaneously binding a
series of ligand molecules in a virtual experiment. For example,
ligand-dependent H-bond flip-flop has been observed in small-
molecule inhibitor complexes of the enzyme purine nucleoside
phosphorylase.14

In a previous paper, we have described a method to generate
a peptidic pseudoreceptorsa miniproteinsabout any molecular
framework of interest, e.g., a pharmacophore. The concept was
validated by constructing receptor surrogates for the enzyme
human carbonic anhydrase, the dopaminergic receptor, and the
â2-adrenergic receptor.5 More recently, we developed an
algorithm to allow forpharmacophore equilibration, an iterative
positional, orientational, and conformational relaxation of the
ligand molecules during receptor optimization. To avoid
problems resulting fromfunctional-group obscuring(e.g., the
occurrence of a H-bond donor and a H-bond acceptor in close
vicinity within the pharmacophore), we have devised a technique
referred to asreceptor-mediated ligand alignment.6 Problems
associated with the adaptation of a receptor to an individual
ligand topologysalbeit small in sizesand H-bond flip-flop may
still jeopardize otherwise reasonable pseudoreceptors as long
as they represent an averaged receptor entity. The splitting of
a pharmacophore-receptor system inton (1:1) complexes,
followed by individual mutual optimization may be considered
as a functional work-around. However, an estimation of the
energy associated with receptor adaptation is hardly possible
with a binding-site model, due to the lack of a residual entity,
defining the amount of tolerable displacement as well as
accounting for a substantial fraction of the total energy of the
system.

Methods

The quasi-atomistic-modeling concept (software Quasar) developed
at our laboratory allows the construction of a receptor surface modelsa
three-dimensional envelope, populated with atomistic properties at
uniformly distributed discrete positionssabout any molecular frame-
work of interest, e.g., a pharmacophore. In contrast to other 3-D QSAR
techniques, our approach includes receptor envelopes, individually
adapted to the topology of the various ligand molecules as well as
H-bond flip-flop particles(mimicking Ser, Thr, Tyr, Cys, His, Asn,
and Gln residues at the true biological receptor) engaging in differently
directed hydrogen bonds with different ligand molecules, simultaneously
binding to the receptor.15 In Quasar, a family of receptor-surface models
is generated by means of a genetic algorithm combined with cross-
validation. The construction of such a family of receptor models
includes the following steps.
1. Construction of Individually Adapted Receptor Envelopes.

First, the training set of ligand molecules is surrounded by virtual
particles (e.g., radiusr° ) 0.8 Å, well-depthε° ) -0.024 kcal/mol,
no electrical charge) defining a van der Waals surface. Next, this
envelope is optimized by means of energy minimization. Optionally,
the ligand conformational space within this primordial envelope may
be scanned with a Monte Carlo search protocol. We refer to this entity
as the “averaged receptor envelope”. Then, each ligand molecule of
both the training and test sets is optimized as a 1:1 ligand-receptor
complex, starting from the averaged receptor envelope, allowing for
individual adaptation of the receptor envelope to the very ligand
topology. Each “lattice point” of the emerging individual receptor
envelope is coupled to the corresponding point of the averaged receptor
envelope by means of a weak positional constraint, typically 0.1-0.5

kcal/(mol‚Å2). This ensures a minimal deformation but, simultaneously,
allows any van der Waals repulsions between ligands and the envelope,
possibly caused by the averaged receptor envelope, to be overcome.
During model evaluation (cf. below), the associated energy is fully
considered. Typical RMS deviations for corresponding points on the
envelope lie in the range of 0.05-0.2 Å, with associated deformation
energies ranging from 0.25 to 3.0 kcal/mol.

2. Generation of an Initial Family of Parent Structures. Points
on the receptor surface are randomly populated with atomistic properties
(cf. Table 1), optionally observing a minimal distance between two
points occupied by H-bonding particles.16 Potential H-bonding sites
may be restricted to points on the receptor envelope which are located
within a reasonable distance and at a favorable orientation with respect
to any H-bond donor or acceptor moiety of the ligand molecules
defining the training set. Likewise, positions suited to host a H-bond
flip-flop particle are defined at spatial regions where donor and acceptor
moieties cluster appropriately. To identify the position on the receptor
surface yielding optimal interactions with ligand functional groups, we
make use of a vector concept, based on the directionality of hydrogen
bonds (cf. ref 5 and references therein). For all systems discussed in
this paper, we used an initial population of 200 different models. If
there is experimental or other evidence for a solvent-accessible receptor
cavity, parts of the receptor envelope may be assigned as representing
solvent (cf. the carbonic anhydrase simulation, below). Alternatively,
regions may be defined as being purely hydrophobic or nonexistent
(void). Such assignments remain unaltered throughout the entire
simulation.

3. Evolution of a Model Family. Using a genetic algorithm (for
a detailed description, see, for example, ref 17) the initial family of
receptor models is evolved using both crossover and mutation events.
When two parents are selected, those with an already better fit are more
likely to be selected for a crossover event than “weaker individuals”.

(14) Montgomery, J. A.; Secrist, J. A., III.Perspect. Drug DiscoVery
Des.1994, 2, 205-220.
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(16) Such a constraint might be meaninful when using the receptor
surrogate for drug-design purposes as the true biological receptor H-bond
donors and H-bond acceptors are never observed at a distance closer than
2.4 Å.

(17) Rogers, D.; Hopfinger, A. J.J. Chem. Inf. Comput. Sci.1994, 34,
854-866.

Table 1. Properties of Receptor-Surface Particles Used in Quasar

particle
nb potential

typea
electronic
charge

well depth of nb
function (kcal/mol)

salt bridge, positive 10/12+ elec +0.25 -4.95/-4.07/-2.33b
salt bridge, negative 10/12+ elec -0.25 -4.95/-4.07/-2.33b
H-bond donor 10/12 -4.95/-4.07/-2.33b
H-bond acceptor 10/12 -4.95/-4.07/-2.33b
hydrophobic, positive 6/12+ elec +0.1 -0.09c
hydrophobic, negative 6/12+ elec -0.1 -0.09c
H-bond flip-flopd 10/12 -4.95/-4.07/-2.33b
surface solvent symmetric

10/12e
-0.97/-0.80/-0.46b,f

a The valuesi andj refer to the attractive and repulsive coefficients
of the nonbonded potential function used for the ligand-receptor
interaction. The general form of this potential isE(r) ) A/r i - C/r j.
b Values for-O-H‚‚‚Y, >N-H‚‚‚Y, and-S-H‚‚‚Y H-bond interac-
tions, respectively, where “Y” denotes a virtual H-bond acceptor.
Identical values are used for the X‚‚‚O, X‚‚‚N, and X‚‚‚S arrangement
where “X” denotes a virtual H-bond donor.c This function adopts the
form E(r) ) A/r12 - C/r.6 The coefficientsA andC are calculated
according toA ) -ε(ri + rj)12 andC ) -2ε(ri + rj)6, respectively,
and withε ) (εiεj)1/2. The given figure representsεj; ri andrj correspond
to the van der Waals radii of the two involved atoms.dH-bond flip-
flop particles can adapt their property (H-bond donor or acceptor) to
each ligand molecule within the pharmacophore, depending on its
interacting functional group.eTo avoid repulsive forces between surface
solvent and any ligand molecule, a symmetric 10/12 potential (mirrored
at r ) r°) is used. This represents a possible approximation to a mobile
solvent.f As the virtual particles may be different in radius from a water
molecule, the associated energy must be corrected for different
volumes: E ) (2rvp/2.75)3E°; e.g., forrvp ) 0.8 Å, E ) 0.197E°.
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At each crossover step, there is a small probability (typically 0.01-
0.1) of a transcription error which is expressed by means of a random
mutation. Only those children are retained which differ by a minimal
amount (typically 5-10% of all populated points) from any parent.
Thereafter, those two individuals of the population with the highest
lack-of-fit (RMS of ∆G°pred vs ∆G°exp obtained from a leave-one-out
cross-validation, combined with the weighted sum of populated points
on the receptor surface; cf., for example, ref 16) are discarded. This
process is repeated until a targetq2 value13 (typically 0.9) or the limiting
number of crossover steps (typically 5000) is reached.
4. Estimation of Free Energies of Ligand Binding. In our

concept,5,6,15we have combined the approach of Blaney et al.18 with a
method of Still et al.19 for estimating ligand solvation energies and a
term to correct for the loss of entropy upon receptor binding following
Searle and Williams:20

The term∆Eint,lig accounts for the changestypically an increasesof
the ligand internal energy while bound to the receptor surrogate from
a strain-free reference conformation. This would seem necessary as
the internal energy of a ligand molecule may increase while maximizing
its interaction with the receptor. Blaney’s approximation is based on
the assumption that all ligands are equally buried within the receptor
and, hence, differences in the solvation energy of the ligand-receptor
complexes become negligible.18 For systems where the ligands expose
a different fraction of their surface from a solvent-accessible binding
site, it is possible to define a solvent-accessible part on the receptor
envelope and, thus, correct for such a situation (cf. below).∆Eenv adapt,lig
is associated with the energy uptake upon modifying the mean receptor
envelope to an entity, individually adapted to each ligand molecule.
To determine the ligand-receptor interaction energy,Elig-rec, we make
use of a directional force field.5,6,15,21,22 Free energies of ligand binding,
∆G°pred, are then obtained by means of a linear regression between
∆G°exp andEbdg using the ligand molecules of the training set:

The slope and intercept of (2) are inherent to a given receptor model
and are also applied to predict the binding energy of ligand molecules
different from those in the training set. In contrast to other methods,
we calibrate each receptor system with a training set5,6,15 rather than
apply a universal function for the various protein-ligand systems.
5. Analysis of the Model Family. The most powerful criterion to

validate a family of receptor models is their ability to predict free
energies of ligand binding for an external set of test ligand molecules
not used during model construction. Other criteria include the cross-
validatedq2 value,13 the lack-of-fit for the ligands of the training set,
and the uniformness of the distribution of the properties mapped onto
the receptor envelope, e.g., larger hydrophobic pockets or solvent-
accessible regions.
To select a training set from the available biological data that spans

parameter space homogeneously, we have adapted a method developed
by Marengo and Todeschini.23 Their algorithm was originally devel-
oped for applications to distance-based experimental design with the
aim to select a fraction of the most different compounds from a given
set of molecules by means of the maximal “minimum distance”. In

our approach, the minimum distance between two molecules is
computed as a weighted function of electrostatic and van der Waals
interactionssdetermined at points of a common surface.6 This allows
for an unbiased selection of the most dissimilar molecules from an
ensemble of ligands to be used as the training set during pseudoreceptor
construction.

Results

We have applied our concept to derive semiquantitative
structure-activity relationships for a series of biological
systems, including theâ2-adrenergic, aryl hydrocarbon, can-
nabinoid, neurokinin-1, and sweet-taste receptor. In addition,
we have derived a model for the enzyme carbonic anhydrase,
as a three-dimensional structure is available for this globular
protein and its active site is known to be solvent accessible.24

The summary of the results is given in Table 2. As examples,
we shall discuss theâ2-adrenergic receptor and the enzyme
human carbonic anhydrase in detail. The three-dimensional
coordinates of all receptor models described in this papersexcept
for the neurokinin-1 ligand set which is proprietarysare
available for distribution (biograf@dial.eunct.ch).
The â2-adrenergic receptor is a member of the class of G

protein-coupled receptors. The rational design of both potent
and selectiveâ2-adrenergic agonistssof particular interest for
the clinical treatment of asthma25swould be facilitated by the
availability of the three-dimensional structure of the receptor-
binding pocket. In the past decade, efforts have been undertaken
in order to derive three-dimensional models for integrated
membrane proteins (see, for example, ref 26). Much attention
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104, 6424-6434.
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(20) Searle, M. S.; Williams, D. H.J. Am. Chem. Soc.1992, 114, 10690-
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4767.
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Don-H‚‚‚VP, we correct for nonlinearity of the Don-H‚‚‚VP angle
(compulsorily assuming a perfect directionality at the VP). For the
arrangement Acc‚‚‚VP, we correct for the deviation of the virtual hydrogen
bond from the closest lone pair at the acceptor fragment (angle LP-Acc‚‚‚
VP) and assume a perfect linearity of the hydrogen bond. Derivation and
calibration of the directional function for H-bond interactions is described
in refs 5 and 21.
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Table 2. Summary of Receptor Models as Generated by Quasara

training set test set (predictions)

correlation
coefficients

RMS
deviation

RMS
deviation

maximal
deviation

biological system
number of ligands in
training and test set

number of parents/
crossovers cvdq2 r

(kcal/mol)
[factor ink]

(kcal/mol)
[factor ink]

(kcal/mol)
[factor ink]

â2-adrenergic receptor 13/6 200/5000 0.847 0.946 0.358 [1.8] 0.829 [4.2] 1.15 [7.2]
aryl hydrocarbon receptor 12/6 200/5000 0.892 0.961 0.353 [1.8] 0.686 [3.2] 1.13 [7.0]
carbonic anhydrase 8/5 200/5000 0.815 0.944 0.380 [1.9] 0.423 [2.1] 0.645 [3.0]
cannabinoid receptor 18/10 200/5000 0.622 0.829 0.693 [3.3] 0.843 [4.3] 1.88 [25]
neurokinin-1 receptor 21/10 200/5000 0.819 0.923 0.483 [2.3] 0.651 [3.1] 1.28 [9.0]
sweet-taste receptor 17/8 200/5000 0.749 0.905 0.287 [1.6] 0.733 [3.5]-1.44 [12]

a All data reflect quantities averaged over the 200 models.

Ebdg≈ Elig-rec- T∆Sbdg- ∆Gsolv.,lig + ∆Eint,lig + ∆Eenv adapt,lig (1)

∆G°pred) |a|Ebdg+ b (2)
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has been concentrated upon the building ofâ2-adrenergic
receptor models in which the X-ray structure of bacteriorhodop-
sin27was used either directly or indirectly, but some controversy
still exists over the validity of such homology models.26,28

In an earlier study, we derived an atomistic binding-site model
for the â2-adrenergic receptor by means of pseudoreceptor
modeling.5 Using nine adrenergic agonists as a training set,
we have constructed a peptidic surrogate consisting of 15 amino
acid residues. The model was capable of reproducing relative
free energies of ligand binding for an external set of six test
ligands within an RMS value of 0.6 kcal/mol of the experimental
value, corresponding to an uncertainty factor of 2.7 in the
binding affinity. This surrogate, however, was constructed about
a “static” pharmacophore model. More recent techniques use
pharmacophore equilibration and scanning of receptor space
using appropriate Monte Carlo search protocols.6

To select a structurally and topologically most diverse training
set from the 19â2-adrenergic antagonists on the basis of the
minimum-distance approach (cf. above), we have used the
electrostatic and van der Waals field within a primordial receptor
envelope. The atomic partial charge model (MNDO/ESP:
partial charges fitted to the electrostatic potential) for the ligand
molecules was derived using MOPAC 6.0;29 free energies of
ligand solvation were calculated using a semianalytical approach
following Still and co-workers.19 Experimental free energies
of ligand binding, ∆G°exp, were taken from ref 30. The
alignment of the ligand molecules is described in ref 5.
A primordial envelope was constructed about 13 ligand

molecules, defining the training set: FEN, TER, AH3, CLB,
2CL, SAL, SKF, TBF2, SYN, AH2, NOR, NIS, and ISOP (for
the systematic names, cf. Table 3). The envelope comprised
201 virtual particles with a radius of 0.8 Å and was subsequently
energy minimized, yielding the averaged envelope, representing
the inner lining of a mean receptor cavity. Next, the ligand
molecules of the training set were minimized within this
envelope, identifying a final position, orientation, and conforma-
tion. Finally, the ligand molecules of the test set (ISO NAB,
ORC, ADR, DU3, and DU2) were similarly allowed to relax
within the mean envelope using the same settings as for the
training set. Starting from this mean envelope, the envelope
of each ligand was then allowed to individually relax and to
adjust to the topology of the very ligand molecules. As at the
true biological receptor adaptation to the ligand topology is
associated with a change in receptor energy, we couple the
individual envelopein status nascendiby a weak positional
constraint of 0.25 kcal/(mol‚Å2) to the mean receptor envelope.
This led to RMS shifts ranging from 0.105 to 0.135 Å,
corresponding to energies of 0.557-0.914 kcal/mol. The largest
envelope deformation for a ligand molecule of the test set was
observed for ligand ISOP (the enantiomer of ligand ISO), with
the aminoethanol C atom “S” configured, while the stereochem-
istry at the corresponding C atom of all other ligand molecules
corresponds to an “R” configuration.
Using an initial population of 200 receptor models, the system

(comprising the 13 ligand molecules defining the training set;
cf. above) was allowed to evolve for 5000 crossover cycles.
The transcription-error rate was set to 0.05, and the minimal
difference between two receptor models was required to be

larger than 0.05 (i.e., 10 out of 201 particles). For the best
individual model, the simulation yielded a cross-validatedq2

of 0.852, and a classicalr value for the linear regression of
0.947. A test set of six ligand molecules was then used to
validate the model family. The RMS deviation of experimental
and predicted free energies of ligand binding for the best model
was 0.854 kcal/mol, corresponding to an uncertainty factor of
4.3 in the binding constant.
The largest individual deviation was observed for ligand

DU3: its experimental and predicted free energies of ligand
binding differ by 1.19 kcal/mol, corresponding to an uncertainty
factor of 7.8 in the binding constant. When averaging was done
over all 200 models, the RMS deviation of experimental and
predicted free energies of ligand binding was calculated to be
0.829 kcal/mol, corresponding to an uncertainty factor of 4.2
in the binding constant. The largest individual deviation was
observed for ligand ISO: its experimental and predicted free
energies of ligand binding differ by 1.15 kcal/mol, corresponding
to an uncertainty factor of 7.2 in the binding constant.

(27) Henderson, R.; Baldwin, J. M.; Ceska, T. A.; Zemlin, F.; Beckmann,
E.; Downing, K. M.J. Mol. Biol. 1990, 213, 899-923.

(28) Hoflack, J.; Trumpp-Kallmeyer, S.TIPS1994, 15, 7-9.
(29) Stewart, J. J. P.J. Comput.-Aided Mol. Des.1990, 4, 1-105.

Distributed by QCPE, University of Indiana, Bloomington, IN (Program
455).

(30) Donné-Op den Kelder, G. M.; Bultsma, T.; Timmerman, H.J. Med.
Chem.1988, 31, 1069-1079.

Table 3. Energies Associated with the Receptor Model for the
â2-Adrenergic Receptor As Generated by Quasara

Training Set (13 Molecules)

ligandb ∆Gexp ∆Eenv ada

∆Gpred

(b)
∆∆Gp-e
(b)

∆Gpred

(a)
∆∆Gp-e
(a)

FEN -11.66 0.834 -11.58 0.08 -11.69 -0.03
TER -11.66 0.675 -11.07 0.60 -11.05 0.61
CLB -11.35 0.659 -11.27 0.08 -11.27 0.08
AH3 -11.21 0.557 -11.26 -0.05 -11.27 -0.06
2CL -10.78 0.741 -10.20 0.58 -10.26 0.52
SAL -10.70 0.593 -10.80 -0.10 -10.73 -0.03
SKF -10.50 0.678 -11.07 -0.57 -10.97 -0.47
TBF2 -10.34 0.717 -10.31 0.03 -10.39 -0.05
SYN -9.76 0.699 -10.12 -0.36 -10.01 -0.25
AH2 -9.60 0.692 -9.69 -0.09 -9.61 -0.01
NOR -8.64 0.656 -8.17 0.47 -8.14 0.50
NIS -8.57 0.884 -9.17 -0.60 -9.23 -0.66
ISOP -8.16 0.914 -8.24 -0.08 -8.33 -0.17

Test Set (6 Molecules)

ligandc ∆Gexp ∆Eenv ada

∆Gpred

(b)
∆∆Gp-e
(b)

∆Gpred

(a)
∆∆Gp-e
(a)

ISO -11.60 0.730 -10.51 1.09 -10.45 1.15
NAB -11.06 0.746 -10.68 0.38 -10.61 0.45
ORC -10.70 0.802 -9.87 0.83 - 9.87 0.83
ADR -10.11 0.813 -9.65 0.46 -9.62 0.49
DU3 -9.69 0.682 -10.88 -1.19 -10.79 -1.08
DU2 -9.13 0.749 -9.97 -0.84 -9.82 -0.69

a All energies are given in kilocalories per mole. Columns marked
with (a): average over 200 models. Columns marked with(b) best
receptor model.b Training set: FEN, 1-(3,4-dihydroxyphenyl)-2-(iso-
propyl-p-hydroxyphenyl)aminoethanol (Fenoterol); TER, 1-(3,4-dihy-
droxyphenyl)-2-tert-butylaminoethanol; AH3, 1-(3-amido-4-hydroxy-
phenyl)-2-tert-butylaminoethanol; CLB, 1-(4-amino-3,5-dichlorophe-
nyl)-2-tert-butylaminoethanol (Clenbutarol); 2CL, 1-(2-chlorophenyl)-
2-tert-butylaminoethanol; SAL, 1-(4-hydroxy-3-hydroxymethylphenyl)-
2-tert-butylaminoethanol (Salbutamol); SKF, 1-(4-hydroxy-3-amino-
methyl-phenyl)-2-tert-butylaminoethanol; TBF2, 1-(3,5-dihydroxyphe-
nyl)-2-tert-butylaminoethanol (Terbutaline); SYN, 1-(4-hydroxyphenyl)-
2-isopropylaminoethanol (N-isopropylnorsynephrine); AH2, 1-(4-hy-
droxy-3-hydroxymethylphenyl)-2-isopropylaminoethanol; NOR, 1-(3,4-
dihydroxyphenyl)-2-aminoethanol (Norepinephrine); NIS, 1-(3-hy-
droxyphenyl)-2-isopropylaminoethanol (N-isopropylnorphenylephrine);
ISOP, (+)-1-(3,4-dihydroxyphenyl)-2-isopropylaminoethanol (Isopro-
terenol). c Test set: ISO, (-)1-(3,4-dihydroxyphenyl)-2-isopropylami-
noethanol (Isoproterenol); NAB, 1-(4-amino-3,5-dichlorophenyl)-2-
isopropylaminoethanol; ORC, 1-(3,5-dihydroxyphenyl)-2-isopropyl-
aminoethanol (Orciprenaline); ADR, 1-(3,4-dihydroxyphenyl)-2-me-
thylaminoethanol (Epinephrine); DU3, 1-(4-hydroxy-3-aminophenyl)-
2-tert-butylaminoethanol; DU2, 1-(4-hydroxy-3-aminopheny)-2-iso-
propylaminoethanol.

4474 J. Am. Chem. Soc., Vol. 120, No. 18, 1998 Vedani et al.



Throughout the 200 models, the variation of∆G°pred of the
ligands of the training set ranges from 0.290 to 0.674 kcal/mol
(corresponding to an uncertainty factor of 1.6-3.4 in the binding
constant), within the test set from 0.325 to 0.723 kcal/mol (1.7-
3.5 ink). Thus, for theâ2-adrenergic receptor,∆G°predvalues
averaged over all 200 models do not differ significantly from
the values predicted by the best individual model. Details are
given in Table 3; the best individual model is shown in Figure
1.
The distribution of “quasi-atomistic particles” on the receptor

surface can be best described as a hydrophobic barrel (lining
the pharmacophore) with 14 specific H-bonding sites interacting
with the ammonium N atom, the ethanolamine O atom, and
the various substituents (hydroxyl, amine) of the aromatic ring.
In addition, two sites engage in a hydrogen bond with the
phenolic ring present in ligand FEN. Of particular interest are
the position and function of the three H-bond flip-flop particles
present. One flip-flop particle, observed in all 200 models,
bridges the ammonium (a pure donor) and ethanolamine (acting
as acceptor) functionalities common to all ligand molecules.
This particle simulates a bifunctional group as found, for
example, in Ser, Thr, or Tyr residues at the true biological
receptor. However, such a functionality can also be simulated
by an averaged receptor model. The second flip-flop particle,
observed in 199 out of 200 models, is located near the para-
position of the aromatic ring. At this position, it functions as
a true flip-flop particle, as ligands CLB and NAB have an amine
substitution at the ring 4-position while most others (except
ORC, TBF2, NIS, and 2CL) have a hydroxyl substituent. The
orientation of this hydroxyl groupswithin our pharmacophore
hypothesissis defined by the ligand molecules including a 3,4-
dihydroxy substitution, forming an intramolecular R-O-H‚‚‚O
hydrogen bond (e.g., ligand TER). The H-bond flip-flop particle
in our quasi-atomistic model is able to simultaneously combine
both donor and acceptor properties, i.e., to act as a H-bond
acceptor toward the ligand molecules NAB and CLB, while
acting as a donor toward most others (e.g., ISO; cf. Figure 2).
The third flip-flop particle, only observed in 13 out of 200
models, simply acts as a H-bond acceptor toward the phenolic
hydroxyl group of ligand FEN.

We have also performed a simulation without including
particles capable of H-bonding, i.e., only allowing for neutral
and charged hydrophobic particles, to analyze the impact of
directional interactions. The corresponding simulation, however,
did not exceed a cross-validatedq2 of 0.456 (largest individual
deviation of a ligand molecule of the test set 1.60 kcal/mol),
demonstrating that, at least for the selectedâ2-adrenergic
agonists, directional hydrogen bonds seem to be mandatory to
reproduce the experimental binding affinities.
Carbonic anhydrase, a zinc-containing enzyme, is an ex-

tremely efficient catalyst of the reversible hydration of carbon
dioxide. The crystal structure of the native enzyme has been
determined to a resolution of 2.0 Å by Kannan and co-workers.24

The structure of the complex between carbonic anhydrase and
the sulfonamide inhibitor 2-acetamido-1,3,4-thiadiazole-5-sul-
fonamide was determined to a resolution of 3.0 Å.31 Clinical
applications of the inhibition of carbonic anhydrase focus on
the treatment of glaucoma, epilepsy, and acute mountain
sickness.32

The construction of a receptor surrogate was based on a total
of 13 sulfonamide inhibitors, 8 defining the training set and 5
representing the test set. The protonation state and stereochem-
istry of the sulfonamide group were adapted from refs 33 and
34. The alignment of the ligands is described in ref 5.
The atomic partial charge model (CM-1 charges) for the

ligand molecules and the free energies of ligand solvation were
obtained using the AMSOL 5.4 software package.35 Experi-
mental free energies of ligand binding,∆G°exp, were derived
from thermodynamic and kinetic data.36-38 In contrast to the
other systems used in this study, an experimental structure is
available for both native and complexed human carbonic
anhydrase.24,31 A quasi-atomistic model for this enzyme was
used to investigate the benefit of particles simulating a solvent-
accessible binding pocket. The active site in human carbonic

(31) Kannan, K. K.; Vaara, I.; Notstrand, B.; Lowgren, S.; Borell, A.;
Fridborg, K.; Petef, M. InDrug Action at the Molecular LeVel; Roberts, C.
G. K., Ed.; McMillan: London, 1977; pp 73-91.

(32)Biology and Chemistry of the Carbonic Anhydrases; Tashian, R.
E., Hewett-Emmett, D., Eds.Ann. N. Y. Acad. Sci.1984, 429.

(33) Mukherjee, J.; Rogers, J. I.; Khalifah, R. G.; Everett, G. W., Jr.J.
Am. Chem. Soc.1987, 109, 7232-7233.

(34) Everett, G. W., Jr. Personal communication on results from15N
NMR studies, 1989.

(35) Cramer, C. J.; Truhlar, D. G.J. Comput.-Aided Mol. Des.1992, 6,
629-666. Distributed by QCPE, University of Indiana, Bloomington, IN
(Program 606).

(36) Taylor, P. W.; King, R. W.; Burgen, A. S. V.Biochemistry1970,
9, 2368-2376.

(37) Kakeya, N.; Aoki, A.; Kamada, A.; Yata, N.Chem. Pharm. Bull.
1969, 17, 1010-1014.

Figure 1. Stereoscopic view of the best surface model of the
â2-adrenergic receptor. Positively charged salt bridges are shown as
large open circles, negatively charged salt bridges as large filled circles.
H-bond donors are shown as medium-sized open circles, H-bond
acceptors as medium-sized filled circles. H-bond flip-flop particles are
shown as large open circles with a central dot. Charged hydrophobic
particles are represented as small open circles, uncharged hydrophobic
particles as dots.

Figure 2. (A) H-bond flip-flop particle acting as a H-bond acceptor
(toward ligand NAB). (B) H-bond flip-flop particle acting as a H-bond
donor (toward ligand ISO). (C) Determination of the orientation of the
4-hydroxyl group within the pharmacophore by ligand TER.
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anhydrase is conical in shape with the catalytic zinc ion located
at its apex.24 The entrance of the active siteslocated 12 Å from
the catalytic zinc and approximately 14 Å in diametersis lined
by the residues His 64, Asn 69, Gln 92, Ile 131, His 200, Pro
202, and Tyr 204. The position, orientation, and conformation
of 2-acetamido-1,3,4-thiadiazole-5-sulfonamide (acetazolamide,
a potent inhibitor of the enzyme) has been determined by means
of X-ray diffraction.31

To analyze the impact of a solvent-accessible binding pocket
on the predictive power of the quasi-atomistic models, we
performed two simulations: one containing no information about
a solvent-accessible portion of the binding pocket and another
where 40% of the surface (at a location relative to the ligand
molecules corresponding to the topology at the true enzyme)
was defined to explicitly represent solvent. This region was
not altered throughout the evolution while all other positions
could change in character during crossover and mutation events.
The results are compared in Table 4.
The simulation including a solvent-accessible surface yielded

a significantly better prediction of the ligands defining the test
set: an RMS deviation of 0.423 kcal/mol (corresponding to an
uncertainty of a factor of 2.1 in the binding affinity) and the
largest deviation for an individual ligand of 0.645 kcal/mol (3.0
in k) compare to RMS and maximal deviations of 0.639 kcal/
mol (2.5 ink) and 1.15 kcal/mol (7.2 ink) for the simulation
without explicit solvent.

The surrogates for the cannabinoid, neurokinin-1, and sweet-
taste receptor systems were generated using settings identical
with those for theâ2-adrenergic receptor (cf. above). The three-
dimensional coordinates of the cannabinoid pharmacophore were
kindly provided by Dr. Paulette A. Greenidge (cf. ref 39). All
ligand molecules were reoptimized in aqueous solution using
the AMBER force field40 as implemented in MacroModel 5.0.41

The atomic partial charge model (MNDO-ESP) for the ligand
molecules was derived using MOPAC 6.0;29 free energies of
ligand solvation were calculated using a semianalytical approach
following Still and co-workers.19 Experimental free energies
of ligand binding,∆G°exp, were taken from ref 42. Coordinates,
alignment, and relative sweetnesses of the sweet-taste ligand
set were kindly provided by Professor Lucio Merlini (Depart-
ment of Organic Chemistry/DISMA, University of Milan,
Italy).43 The atomic partial charge model (MNDO-ESP) for
the ligand molecules was derived using MOPAC 6.0;29 free
energies of ligand solvation were calculated using a semiana-

(38) Sprague, J. M. InTopics in Medicinal Chemistry, Rabinowitz, J.
L., Myerson, R. M., Eds.; Interscience: New York, 1968; pp 1-63.

(39) Schmetzer, S.; Greenidge, P. A.; Kovar, K. A.; Folkers, G.J.
Comput.-Aided Mol. Des., in press.

(40) Weiner, S. J.; Kollmann, P. A.; Case, D. A.; Singh, U. C.; Ghio,
C.; Alagona, G.; Profeta, S., Jr.; Weiner, P.J. Am. Chem. Soc.1984, 106,
765-784.

(41) Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C.J. Comput.
Chem.1990, 11, 440-467.

(42) Compton, D. R.; Rice, K. C.; DeCosta, R. K.; Razdan, L. S.; Melvin,
L. S.; Johnson, M. R.; Martin, B. R.J. Pharmacol. Exp. Theor.1993, 265,
218-226.

(43) Arnoldi, A.; Bassoli, B.; Merlini, L.; Ragg, E.J. Chem. Soc., Perkin
Trans.1993, 1, 1359-1366.

Figure 3. Experimental vs predicted dissociation constants for theâ2-adrenergic, aryl hydrocarbon, cannabionoid, neurokinin-1, and sweet-taste
receptor as well as for the enzyme carbonic anhydrase. Ligand molecules of the training set are represented as open circles, ligand molecules of the
test as filled circles.
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lytical approach following Still and co-workers.19 Coordinates
and experimental free energies of ligand binding,∆G°exp, of
the neurokinin-1 antagonist molecules were kindly provided by
Dr. Hans Briem (Boehringer Ingelheim KG, Ingelheim, Ger-
many). The atomic partial charge model (CM-1 charges) and
the free energies of ligand solvation were obtained using the
AMSOL 5.4 software package.35

While the models for the neurokinin-1 and the sweet-taste
receptor provide reasonable constructs (cross-validatedq2, 0.819
and 0.749; RMS deviations for the ligand molecules of the test
set, 0.651 and 0.733 kcal/mol, corresponding to uncertainty
factors of 3.1 and 3.5 in the binding affinity, respectively), the
surrogate for the cannabinoid receptor (cross-validatedq2, 0.622;
RMS deviation for the ligand molecules of the test set, 0.843

kcal/mol due to an outlier, predicted to bind 1.88 kcal/mol too
weakly; factor of 25 ink) represents a less powerful model. A
summary of the results on the quasi-atomistic models is given
in Table 2; all plots of∆G°pred vs∆G°exp are shown in Figure
3.

Conclusions

Quasi-atomistic receptor modeling bridges 3-D QSAR and
receptor modeling by populating receptor surface models with
atomistic properties such as hydrogen bonds, salt bridges,
hydrophobic regions, and solvent. The adaptation of a receptor
to an individual ligand topologysalbeit small in sizesis
simulated byindiVidually adjusted receptor enVelopes, coupled
to the averaged envelope by means of a soft positional constraint.
In addition, our approach includesH-bond flip-flop particles
(mimicking conformationally mobile H-bond functionalities at
the true biological receptor) as well as for solvent-accessible
binding sites. A family of receptor models is evolved using a
genetic algorithm, such as to reduce the influence of random
errors and, simultaneously, scanning receptor space more
exhaustively. The use of quasi-atomistic surrogates would seem
to be advantagous when large numbers of ligand molecules are
to be tested against a known or hypothetical receptor. The
quasi-atomistic character of the approach yields still intuitive
models for drug-design purposes.

Note Added in Proof. The most recent version of Quasar
allows also for ligand-receptor polarization effects. Following
the approach of Howard et al.44 and using parameters of
Applequist et al.,45 this additional term permits a more subtle
treatment of ligand molecules lacking in functional groups
capable of hydrogen bonding.
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Table 4. Energies Associated with the Receptor-Surface Model
for the Enzyme Carbonic Anhydrase As Generated by Quasara

Training Set (8 Molecules)

ligandb ∆Gexp ∆Eenv ada

∆Gpred

(n)
∆∆Gp-e
(n)

∆Gpred

(s)
∆∆Gp-e
(s)

ETZA -11.79 0.762 -11.80 -0.01 -11.64 0.15
NTS -11.23 0.395 -11.17 0.06 -11.13 0.10
MTZ -10.63 0.593 -10.68 -0.05 -10.81 -0.18
BAAA -10.46 0.536 -10.43 0.03 -10.50 -0.04
NBSA -9.64 0.508 -9.55 0.09 -9.23 0.41
DBSA -9.64 0.413 -9.47 0.17 -9.08 0.56
SBSA -9.13 0.431 -9.20 -0.07 -9.83 -0.70
BSA -7.79 0.290 -8.04 -0.25 -8.10 -0.31

Test Set (5 Molecules)

ligandb ∆Gexp ∆Eenv ada

∆Gpred

(n)
∆∆Gp-e
(n)

∆Gpred

(s)
∆∆Gp-e
(s)

AAA -10.52 0.474 -9.37 1.15 -9.89 0.63
LBSA -9.27 0.359 -8.60 0.67 -8.63 0.64
YBSA -8.56 0.418 -8.45 0.11 -8.42 0.14
MBSA -8.43 0.374 -8.46 -0.03 -8.20 0.23
SAM -7.04 0.380 -6.53 0.51 -7.11 -0.07

a All energies are given in kilocalories per mole. Columns marked
with (n): normal simulation. Columns marked with (s): simulation
including 40% solvent-accessible surface. All data represent quantities
averaged over 200 models.b Training set: ETZA, 6-ethoxybenzothia-
zole-2-sulfonamide (Ethoxzolamide); NTS, 2-nitrothiophene-5-sulfona-
mide; MTZ, 2-acetimido-3-methyl-1,3,4-thiadiazole-5-sulfonamide (Meta-
zolamide); BAAA, 2-butylamido-1,3,4-thiadiazole-5-sulfonamide; NBSA,
4-nitrobenzenesulfonamide; DBSA, 3,5-dichlorobenzenesulfonamide;
SBSA, benzene-1,4-disulfonamide; BSA, benzenesulfonamide.c Test
set: AAA, 2-acetamido-1,3,4-thiadiazole-5-sulfonamide (Acetazola-
mide); LBSA, 4-chlorobenzenesulfonamide; YBSA, 4-cyanobenzene-
sulfonamide; MBSA, 4-methylbenzenesulfonamide; SAM, 4-aminoben-
zenesulfonamide (Sulfanilamide).
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